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An Optimization Technique for
Lumped-Distributed Two Ports

KENNETH W. IOBST, MEMBER, IEEE, AND KAWTHAR A. ZAKI

Abstract — A frequency domain direct efficient analysis and an optimiza-
tion technique of a large class of lumped-distributed networks containing
active elements are presented. Sensitivity and Hessian matrix calculations
are performed using truncated Taylor series expansion of two-port parame-
ters of subnetworks. An interactive computer program was developed to
demonstrate the application of the method. Examples of network optimiza-
tions are included to illustrate the powerfulness of the technique.

I. INTRODUCTION

OST MICROWAVE integrated circuit designs re-

quire a significant amount of computer aided analy-
sis and optimization. In the past decade, techniques for
network sensitivity and optimization have received consid-
erable attention. These techniques generally belonged to
two broad categories: the indirect approach which utilizes
the concepts of adjoint networks [1], [2], and other direct
approaches that utilize the inverse of a nodal admittance
matrix [3], [4].

This paper presents a new direct efficient approach to
the analysis and optimization of a large class of lumped-
distributed networks containing active elements. The class
of networks under consideration includes microwave in-
tegrated circuits and other networks that possess sparse
nodal admittance matrices. Although it is well known that
such a class of networks is more efficiently analyzed as an
interconnection of subnetwork m-ports [5], [6], little has
been done to extend this direct analysis approach to the
computation of network sensitivities [7]. The development
of such an approach for the frequency domain analysis and
optimization of Iumped-distributed two-port networks
using the Hessian matrix is the subject of this paper. In this
approach, a two-port network is analyzed as the intercon-
nection of several subnetworks expanded in a truncated
nth-order Taylor series of their two-port parameters. Di-
rect analysis of the two-port network is performed by
converting each subnetwork to an appropriate domain for
interconnection, then linearly combining their Taylor series
terms. The number of terms used in the expansion de-
termines the highest order of network sensitivity available
for optimization.

This direct approach to network sensitivity analysis is
more efficient than conventional adjoint and inverse nodal
admittance matrix approaches because it does not require
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complex nodal admittance matrix inversion, nor repeated
analyses. A comparison of these three basic approaches to
network sensitivity analysis shows that computations for
second-order direct analysis increase linearly with the num-
ber of interconnected subnetworks and as the square of the
number of variable network elements. For the adjoint and
inverse nodal admittance analysis, the required computa-
tions increase with the cube of the number of nodes.

To demonstrate the powerfulness of this new approach,
an interactive computer program was developed for the
analysis and optimization of lumped-distributed two ports
containing active elements in the frequency domain. The
program accepts any set of eighteen lumped-distributed
two-port subnetwork types including: uniform transmis-
sion lines, RLC subnetworks, controlled sources, ideal
transformers, mutually coupled coils, gyrators, and nega-
tive converters. Permissible interconnections include: series,
parallel, cascade, and hybrid interconnections in the im-
pedance, admittance, hybrid, transmission, and scattering
parameter domains.

Section II briefly describes the methods used in the
sensitivity computations of interconnected networks. Sec-
tion IIT presents the analysis and optimization technique,
including error function definitions, various algorithms
used for optimization, and the strategy of the optimization
program. Examples of network optimizations are given in
Section 1V, including an octave bandwidth FET amplifier
and a lumped circuit approximating a uniformly distrib-
uted RC line, which demonstrate the powerfulness of this
new approach.

II. SENSITIVITY ANALYSIS OF INTERCONNECTED
Two-PoRT NETWORKS

The class of networks that can be analyzed and opti-
mized using the technique described in this paper is linear
two ports which can be decomposed as an interconnection
of two-port subnetworks. The interconnections between
any two subnetworks can be one of the commonly used
interconnections [8], namely series, parallel, hybrid, and
cascade. However, for simplicity and to keep the length of
this paper within a reasonable limit, the process is il-
lustrated here only for the case of cascaded subnetworks
shown in Fig. 1. The optimization procedure of the net-
work involves the minimization of a properly chosen error
function. The error function is expressed as a truncated
second-order Taylor series expansion. This expansion in-
volves only subnetwork two-port parameters and their
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Fig. 1. Cascaded two-port.
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Fig. 2. Optimization strategy.

partial derivatives. For a cascaded network the required
partial derivatives are calculated from the transmission
matrix of the subnetworks that contain the variable ele-
ment. Thus, for the cascaded network in Fig. 1 which
consists of n subnetworks, the overall transmission matrix
is expressed as

T(x)=T1T2'”Tk71Tka+1'“Tn (1)

where T, is the transmission matrix of the k th subnetwork
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of the cascade, k=1,2,---,n, and x is a vector of the
natural logarithm of the r variable network elements. If x,
belongs only to subnetwork /, x, only to subnetwork %,
then the partial derivatives of T(x) with respect to x, and
x, are given by

9rT arT,
m:Tsz'T};IWp]]’[+1]—;ﬂ P=1’2 (2&)
1 1
arr 97T,
— =TT, T 2T, T,, p=12
ax;’ dx? "
(2b)
’T T,
a1, .
'Tk—la—ijkﬂ“‘YL, i*j. (2)

Table I shows some of the more common circuit elements
with their transmission matrices and their first- and sec-
ond-order partial derivatives. This process is used to com-
pute very effectively the required derivatives of the error
function in the various algorithms used in the minimiza-
tion. The same technique can be used to analyze any
interconnected two-port network, not only the cascaded.
Details of this process are given in [8] using tensor notation
to describe the interconnection of subnetworks, even those
requiring two-port parameter domain conversion.

II1.

Optimization of the network starts by choosing a suita-
ble error function to measure the difference between de-
sired and actual two-port frequency responses of the
network. This error function should have a zero value when
the desired and actual frequency responses of the network
are equal, and a value approaching positive infinity when
they are unequal. A weighted least pth error function with
even p is one such function which is used in a demonstra-
tion program to represent a reasonable measure of the
€ITOT.

Network scaling is achieved in two ways. First, the
network is analyzed with elements and frequencies centered
about unity, and second, the network is optimized in a
logarithmic vector space of variable network elements and
network frequency responses. This second method of scal-
ing smoothes the error function for better computational
stability and more dynamic range.

As shown in Fig. 2, six basic algorithms are used for
network optimization. They are: an initial nonsequential
grid search, an algorithm for eliminating insensitive varia-
ble network elements, the method of steepest descent,
Newton’s method, a modified Newton method for han-
dling nonpositive definite Hessian matrices, and a cubic
line search. Only one of these algorithms, the method of
steepest descent, is absolutely required for global conver-
gence of the combined algorithm. All other algorithms are
optional and are shown within the dotted borders in Fig. 2.

With the exception of variable network element elimina-
tion, all optimization algorithms attempt to minimize the

OPTIMIZATION OF Tw0-PORT NETWORKS
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A. Error Function Definition we 5001

In the circuit of Fig. 1, the source and load resistances [ % = %
an]_-_ 120 sej'-‘l 108.n

R, and R, are taken to be part of the cascade. If the
overall transmission matrix of the network is 4, B, C, D, as
defined in the figure, then the gain error function ¢, may
be defined as

-8
Desired Power Gain = 20 1cgm|521k =8db , 6GHz S f g 12 GHz vy " 30 X 10 cmfsec , & = 0

Fig. 3. FET amplifier circuit.

4R, \?
€= 2, | Ad*— =2 (32) o
Teq
where G, is a desired power gain. Similarly error functions o - Fova
for the output and input reflection coefficients €r, and €r, P
can be defined, respectively, by ’ s N

(3b)
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freq

where p is a positive integer. An overall weighted error
function can be defined as

€=wge, +wep +wyer (4) 5 : e

where Wa, Wy, and w, are suitable nonnegative weighting Fig. 4. Initial and final response of FET amplifier example.
coefficients. It is clear that all the partial derivatives of e,

with respect to the natural logarithm of any of the network 2
elements, involve only the partial derivatives of the trans- ——I*W'“"“""" i
mission matrix elements 4, B, C, and D, all of which are _

C [ C, == c, ==
readily computable as explained in Section II. lT ’ ’ ‘

1V. ExAMPLES OF NETWORK OPTIMIZATION

Two examples of networks are chosen to demonstrate besired z), = SOHVA® o g iciei0.0

the powerfulness of the present optimization technique. Viw
The first network is a wide-band single-stage FET ampli- Fig. 5. Lumped model of a distributed RC line.
fier consisting of input and output matching networks,
each of which has three stubs and a single cascaded line as TABLE II
shown in Fig. 3 [9]. The FET is defined in Table II by FET SCATIERING PARAMETERS
scattering parameters at seven frequencies from 6 to 12 R - - -
GHz, inclusive. All the transmission lines and stubs have H 1 A 2
fixed characteristic impedances and variable lengths. The 6 | 0.730.296° 0.0517 69.8°| 1.97, 99.3°| 0.64/ —26°
network was optimized for a constant 8-dB power gain 7 | ou69s-120°| 0.059¢ 70.3°| 1.80/ s8.2°| 0.63/ -30°
over the frequency band of 6 to 12 GHz. The error 8 | 0.67/-224°| 0.066/ 73.2°| 1.71/ 78.4°| 0.62/ -35°
function used in the optimization is as given in (3) and (4), (cney 9 | 0650136 0.073/_77.2°| 1.56/ 69.8°| 0.61/ -40°
with the values of p=2, w,=w, =0, and Wg=1- This 10 | 0.62/-167° 0.0817 82.7°| 1.45/ €1.7°| 0.61/ —45°
network was optimized in 5 iterations using the present 11| 0614055 0.093/ 87501 1.38/ 53.7°| ©.60/ —50°
technique. The solution obtained by the present technique 12 | 0.e2z-160°] 0.108/_90.7°| 1.33/ s4.6°| ©.60/ -58°
indicated that the last stub can be removed. Initial and
final values of the line lengths and amplifier response are

TABLE II1

given in Table III and Fig. 4, respectively.
The second example is a lumped RC ladder network,
shown in Fig. 5, which was previously analyzed and opti- Tnitial Final

VARIABLE LINE LENGTHS FOR FET AMPLIFIER EXAMPLE

mized by Wing and Behar [4] using inverse nodal admit- 1 e o oo

. v . cm . cm
tance analysis to compute first- and second-order 11 0. 2956 o cor
network element sensitivities. The network contains seven Il sose 0'2113
variable network elements, four capacitances, and three 13 o 2986 o'mo
resistances, and is optimized over a logarithmic range of ‘ '

. . . 16 0.2986 0.3727
ten frequencies between 0.1 and 10 radians. The desired 1 o s Lo
input impedance over this range was that of a distributed T '

RC hne 18 3.2986 0.001198
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TABLE IV
VARIABLE NETWORK ELEMENTS FOR LUMPED RC LINE
EXAMPLE
initial Final
cl 0.1250 ¢.04319
R1 0.2500 0.1258
C2 0.2500 0.1973
R2 0.5000 0.2512
C2 0.5000 0.2866
R3 1.000 0.3276
C4 L 1.000 0.4729
TABLEV

InpuT IMPEDANCE FOR LUMPED RC LINE EXAMPLE

Initial Z11 Final and Desired Z11
-1.0 | 5.4264 [ ~81.301° 10.008 / -88.091°
-0.8 3.5103 / -76.518°_| 6.3219 / ~86.978°
-0.6 2.3647 [ _-69.718° 4.006 /__~85.222°
-0.4 1.6621 / =61.265° 2.5426 [ ~82.475°
0.2 | 1.2776 / =53.083° 1.6331 / _-78.252°
Log w 0.0 | 1.0487 / -47.964° 1.0744 [ -72.042°
0.2 |0.87116/ ~47.033° 0.74188/ -63.748°
0.4 0.70003/_=48.554° 0.55326/_=54.564°
0.6 0.54582/_=50.071° 0.44761/ ~47.151°
0.8 |0.42426/ -51.302° 0.37773/_=43.688°
1.0 0.32867/ ~33.267° 0.31451/ ~43.729°

Direct optimization of the RC ladder network required
20 iterations, including the initial grid search. This com-
pares favorably to Wing and Behar’s optimization of the
same network which took 44 iterations. Newton’s method
gave the lowest step error in 12 of these iterations, and the
method of steepest descent in only 7 of these iterations.
Variable network eléments were eliminated in only one
iteration, indicating that the optimized input impedance
was sensitive to all variable network elements most of the
time. Initial and final variable network elements for this
network optimization are shown in Table IV with initial
and final input impedances for all frequencies in Table V.,
The optimized final values are identical in both magnitude
and phase to the desired input impedances at all frequen-
cies shown. The error function used in the optimization is
that of (3) and (4) withp =2, w; =1, w, = w, = 0.

V. CONCLUSION

A technique is presented for the optimization of a large
class of lumped-distributed microwave networks contain-
ing active elements. This technique computes the network
sensitivities and the Hessian matrix directly, using an effi-
cient method which does not require repeated analysis nor
the inversion of a nodal admittance matrix. The optimiza-
tion strategy used in a demonstration program is described
and examples of a wide-band single-stage FET amplifier
and a lumped RC ladder were used as 111ustrat10ns of the
powerfulness of the technique.
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