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Abstract —A frequency domain direct efficient anafysis and an optkrdza-

tion technique of a large class of hmtped-distributed networks containing

active elements are presented. Sensitivity and Hessian matrix calculations

are performed using trnncated Taylor series expansion of two-port parmtte-

ters of subrtetworks. An interactive computer program was developed to

demonstrate the application of the method. Examples of network optimiza-

tion are included to illustrate the powesfuhtess of the technique.

1. INTRODUCTION

M OST MICROWAVE integrated circuit designs re-

quire a significant amount of computer aided analy-

sis and optimization. In the past decade, techniques for

network sensitivity y and optimization have received consid-

erable attention. These techniques generally belonged to
two broad categories: the indirect approach which utilizes

the concepts of adjoint networks [1], [2], and other direct

approaches that utilize the inverse of a nodal admittance

matrix [3], [4].

This paper presents a new direct efficient approach to

the analysis and optimization of a large class of lumped-

distributed networks containing active elements. The class

of networks under consideration includes microwave in-

tegrated circuits and other networks that possess sparse

nodal admittance matrices. Although it is well known that

such a class of networks is more efficiently analyzed as an

interconnection of subnetwork m-ports [5], [6], little has

been done to extend this direct analysis approach to the

computation of network sensitivities [7]. The development

of such an approach for the frequency domain analysis and

optimization of lumped-distributed two-port networks

using the Hessian matrix is the subject of this paper. In this

approach, a two-port network is analyzed as the intercon-

nection of several subnetworks expanded in a truncated

n th-order Taylor series of their two-port parameters. Di-

rect analysis of the two-port network is performed by

converting each subnetwork to an appropriate domain for

interconnection, then linearly combining their Taylor series

terms. The number of terms used in the expansion de-

termines the highest order of network sensitivity available

for optimization.

This direct approach to network sensitivity analysis is

more efficient than conventional adjoint and inverse nodal

admittance matrix approaches because it does not require
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complex nodal admittance matrix inversion, nor repeated

analyses. A comparison of these three basic approaches to

network sensitivity analysis shows that computations for

second-order direct analysis increase linearly with the num-

ber of interconnected subnetworks and as the square of the

number of variable network elements. For the adjoint and

inverse nodal admittance analysis, the required computa-

tions increase with the cube of the number of nodes.

To demonstrate the powerfulness of this new approach,

an interactive computer program was developed for the

analysis and optimization of lumped-distributed two ports

containing active elements in the frequency domain. The

program accepts any set of eighteen lumped-distributed

two-port subnetwork types including: uniform transmis-

sion lines, RLC subnetworks, controlled sources, ideal

transformers, mutually coupled coils, gyrators, and nega-

tive converters. Permissible interconnections include: series,

parallel, cascade, and hybrid interconnections in the im-

pedance, admittance, hybrid, transmission, and scattering

parameter domains.

Section II briefly describes the methods used in the

sensitivity y computations of interconnected networks. Sec-

tion HI presents the analysis and optimization technique,

including error function definitions, various algorithms

used for optimization, and the strategy of the optimization

program. Examples of network optimizations are given in

Section IV, including an octave bandwidth FET amplifier

and a lumped circuit approximating a uniformly distrib-

uted RC line, which demonstrate the powerfulness of this

new approach.

II. SENSITIVITY ANALYSIS OF INTERCONNECTED

TWO-PORT NETWORKS

The class of networks that can be analyzed and opti-

mized using the technique described in this paper is linear

two ports which can be decomposed as an interconnection

of two-port subnetworks. The interconnections between

any two subnetworks can be one of the commonly used

interconnections [8], namely series, parallel, hybrid, and

cascade. However, for simplicity and to keep the length of

this paper within a reasonable limit, the process is il-

lustrated here only for the case of cascaded subnetworks

shown in Fig, 1. The optimization procedure of the net-
work involves the minimization of a properly chosen error

function. The error function is expressed as a truncated

second-order Taylor series expansion. This expansion in-

volves only subnetwork two-port parameters and their
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of the cascade, k=l,2,. .- ,n, and x is a vector of the

natural logarithm of the r variable network elements. If xl

belongs only to subnetwork 1, x, only to subnetwork k,

then thepartial derivatives of T(x) with respect toxl and

x, are given by

aPT apq

—=TITz,..T1_l—T~ql...T~,8X: 8X: p=l,2 (2a)

Fig. 1. Cascaded two-port

+
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Fig. 2. Optimization strategy.

partial derivatives. For a cascaded network the required

partial derivatives are calculated from the transmission

matrix of the subnetworks that contain the vafiable ele-

ment. Thus, for the cascaded network in Fig. 1 which

consists of n subnetworks, the overall transmission matrix

is expressed as

T(x) =T1T2- . . T~_lT~T~hl “ “ . T. (1)

where T~ is the transmission matrix of the k th subnetwork

aPT aPTk

—= T1T2. ..T8X: —Tk–l 8X: k+ 1 ..-T~, p=l,2

(2b)

a2T
—= TlT2. .. T[_l~T,+, ...
ax, ax, 1

aTk
—T“Tk–l ax k+ l”” . Tn, i* j. (2c)

J

Table I shows some of the more common circuit elements

with their transmission matrices and their first- and sec-

ond-order partial derivatives. This process is used to com-

pute very effectively the required derivatives of the error

function in the various algorithms used in the minimiza-

tion. The same technique can be used to analyze any

interconnected two-port network, not only the cascaded.

Details of this process are given in [8] using tensor notation

to describe the interconnection of subnetworks, even those

requiring two-port parameter domain conversion.

III. OPTIMIZATION OF TWO-PORT NETWORKS

Optimization of the network starts by choosing a suita-

ble error function to measure the difference between de-

sired and actual two-port frequency responses of the

network. This error function should have a zero value when

the desired and actual frequency responses of the network

are equal, and a value approaching positive infinity when

they are unequal. A weighted least pth error function with

even p is one such function which is used in a demonstra-

tion program to represent a reasonable measure of the

error.

Network scaling is achieved in two ways. First, the

network is analyzed with elements and frequencies centered

about unity, and second, the network is optimized in a

logarithmic vector space of variable network elements and

network frequency responses. This second method of scal-

ing smoothes the error function for better computational

stability and more dynamic range.

As shown in Fig. 2, six basic algorithms are used for

network optimization. They are: an initial nonsequential

grid search, an algorithm for eliminating insensitive varia-

ble network elements, the method of steepest descent,

Newton’s method, a modified Newton method for han-

dling nonpositive definite Hessian matrices, and a cubic
line search. Only one of these algorithms, the method of

steepest descent, is absolutely required for global conver-

gence of the combined algorithm. All other algorithms are

optional and are shown within the dotted borders in Fig. 2.

With the exception of variable network element elimina-

tion, all optimization algorithms attempt to minimize the



IOBST AND ZAIU : LUMPED-DISTRIBUTED TWO PORTS

TABLE I (Continued)

2169

TABLE I
CIRCUIT ELEMSNTS,TRANSMISSIONMATRICES, AND —

‘~

t“

—

t“

I

SENSITIVITIES

T
& &

i ax 2

i

!axl[ 1OR

000

rh 1j.>L

00

J

~+];l
o

j mc

00

——

CIRCUIT xi

Serle,-s,rie,

R,L, c LIR

~b
RLC

—.— t“ L

em c

Serie.-

P.rsll.1 t. T

R,L, C

~ e

R .1

L

c

In I

T

[1
lZ

01

R+j (. L- :2

—

‘j
—

t. L

or

t“ c

t“ c

—

t“ L

!. c

t. c

A

a“i3’:i

[100
00

[100
00

-
100

‘$,LRY3 O

“ 01
d q,,,~

0 0“

&Y2 ~

c-

[100
-RY3 0 [100

2RWRY2 0

! 11[00 0 0’

,-jmz o juLr2(2jmLY-1)0

CIRCUIT

shun, Opened

S,.b

k>

&

Ideal Transformer

N,l

2C

. .

IIT
2

‘~ *

[1 d
j,ALR

i, L

o 0

+

‘“’; 1Q“ 0

[1

o +CzQ
1,) c L

o 0

7
clRCUIT %

Par.dlel-serle.

R,L, c
1“ R

*
c t,, L

I
&c

K- I.”e,te,

23=[1
!“ L 00

or

!. c 00

[1

!“ c 00

no

Par.llel-Parallel t“ R
X,L,C

m .
t“ L

RLC II
~:] [;+ :]

local error function by simultaneously varying all variable

network elements. The way these network elements are

varied is different for each minimization algorithm based

on the sensitivity information required by the algorithm.

One of these algorithms, the grid search, requires no sensi-

tivity information. This algorithm executes faster than the

other algorithms, but gives the lowest rate of convergence.

The method of steepest descent and the cubic line search

require first-order sensitivity y information, and execute

slower than the grid search but with a much better rate of

convergence. The Newton method algorithms both require

second-order sensitivity information and execute the slowest

but with the best rate of convergence, approaching

second-order. Therefore, the selection of which algorithms

to use for a particular network optimization becomes al-

most as important as the choice of initial variable network

elements. This selection should be based on the accuracy of

initial variable network elements, the computational costs

for analysis and optimization, and past experience with

similar networks.
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A. Error Function Definition

In the circuit of Fig. 1, the source and load resistances

Rg and RL are taken to be part of the cascade. If the

overall transmission matrix of the network is A, B, C, D, as

defined in the figure, then the gain error function Cg may

be defined as

‘g=2q(AA*-%)p(3a)

where GOis a desired power gain. Similarly error functions

for the output and input reflection coefficients Cr, and ~r,

can be defined, respectively, by

where p is a positive integer. An overall weighted error

function can be defined as

c = ‘gcg + Wcrl + ‘2cr2 (4)

where Wg, WI, and Wz are suitable nonnegative weighting

coefficients. It is clear that all the partial derivatives of c,

with respect to the natural logarithm of any of the network

elements, involve only the partial derivatives of the trans-

mission matrix elements A, B, C, and D, all of which are

readily computable as explained in Section II.

IV. EXAMPLES OF NETWORK OPTIMIZATION

Two examples of networks are chosen to demonstrate

the powerfulness of the present optimization technique.

The first network is a wide-band single-stage FET ampli-

fier consisting of input and output matching networks,

each of which has three stubs and a single cascaded line as

shown in Fig. 3 [9]. The FET is defined in Table II by

scattering parameters at seven frequencies from 6 to 12

GHz, inclusive. All the transmission lines and stubs have

fixed characteristic impedances and variable lengths. The

network was optimized for a constant 8-dB power gain

over the frequency band of 6 to 12 GHz. The error
function used in the optimization is as given in (3) and (4),

with the values of p = 2, WI = W2 = O, and Wg= 1. This

network was optimized in 5 iterations using the present

technique. The solution obtained by the present technique

indicated that the last stub can be removed. Initial and

final values of the line lengths and amplifier response are

given in Table III and Fig. 4, respectively.

The second example is a lumped RC ladder network,

shown in Fig. 5, which was previously analyzed and opti-

mized by Wing and Behar [4] using inverse nodal admit-

tance analysis to compute first- and second-order

network element sensitivities. The network contains seven

variable network elements, four capacitances, and three

resistances, and is optimized over a logarithmic range of

ten frequencies between 0.1 and 10 radians. The desired

input impedance over this range was that of a distributed

RC line.

m 500,

1$ l-8db ,
-8

“sired ‘“”” ‘“in “ 20 I“g,o 2,
6GHZSf S12GHZ , “,. 30,,0../s,. ,4-0

Fig. 3. FET amplifier circuit.
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Fig. 5. Lumped model of a “distributed RC line.

TABLE II
FET SCATTERINGPARAMETERS

—

6

8

(c;.) 9

10

11

12

s11 ’12 ’21 ’22

o.73~ 0.051/ 69.8° 1.97[ 99.3. 0.64&

0.69U o.059~ 1.84f 88.2” 0.63~

0.67~ 0.066/ 73,2” 1.71{ 78.4” 0.62~

0.65& 0.073/ 77.2” 1.56{ 69.8° 0.61~

0.62~ 0.081/ 82.7° 1.451 61.7- 0.611~

0.61&&TQ 0.093/ 87.5- 1.3s/ 53.7” 0.60~

0.b2~ 0.108/ 90.7” 1.33/ 44.6” 0.60~

TABLE III
VARIABLE LINE LENGTHS FOR FET AMPLIFIER EXAMPLE

Initial Flnal

11

12

13

14

16

17

18

0.2986 cm

0.2986

0.29S6

0.2986

0.29S6

0.2986

0.2986

0.3247 cm

0,4074

0.2113

0.2740

0.3727

1.012

0.001198
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TABLE IV
VARIABLE NETWORK ELEMSNTS FOR LUMPED RC LIm

EXAMPLE
[1]

hic ial Final

‘, 1~

[2]

‘1
0.2500 0.1258

C2 0.2500 0.1973 [3]

‘2
0.5000 0.2512

C2

1

0.5000 I0.2866

1

[4]

‘3
1.000 0.3276

c’kEL!ll [5]

TABLE V [6]
INPUT IMPEDANCEFORLUMPED RC LINE EXAMPLE

-1.0

-0.8

-0.6

-0.4

-0.2

Log w 0.0

0.2

0.4

0.6

0.8

1.0

lnl=fal 211 ‘1”=1 and “sired ’11 [7]

5.4264 J -81.301 “ 10.008 I -88.091”

3.5103 1 -76.518e_ 6.3219 I -86.978° [8]
2.3447 I -69.718” 4.006 / -85.222°

1.6621 I -61.2650 2.5426 I -82.475s

1.2776 I -53.083- 1.6331 i -78.252- [9]
1.0487 I -47.964” 1.0744 f -72.042 -

0.87116/ -47.033” 0.74188/ -63.748°

0. 70003/ -48.554 “ 0.553261 -54.564-

0.54582/ -50.071 “ 0.44761/ -47.151-

0.424261 -51.302” 0.377731 -43.688”

0. 32867~ 0.31431/ -43. 729S

1 I 1

Direct optimization of the RC ladder network recmired

20 iteratio~s, including the initial grid search. This ‘com-

pares favorably to Wing and Behar’s optimization of the

same network which took 44 iterations. Newton’s method

gave the lowest step error in 12 of these iterations, and the

method of steepest descent in only 7 of these iterations.

Variable network elements were eliminated in only one

iteration, indicating that the optimized input impedance

was sensitive to all variable network elements most of the

time. Initial and final variable network elements for this

network optimization are shown in Table IV with initial

and final input impedances for all frequencies in Table V,

The optimized final values are identical in both magnitude

and phase to the desired input impedances at all frequen-

cies shown. The error function used in the optimization is

that of (3) and (4) withp = 2, WI =1, Wz= Wg= O.

V. CONCLUSION

A technique is presented for the optimization of a large

class of lumped-distributed microwave networks contain-

ing active elements. This technique computes the network

sensitivities and the Hessian matrix directly, using an effi-

cient method which does not require repeated analysis nor

the inversion of a nodal admittance matrix. The optimiza-

tion strategy used in a demonstration program is described

and examples of a wide-band single-stage FET amplifier

and a lumped RC ladder were used as illustrations of the

powerfulness of the technique.
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